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4-Manifolds which embed in IR 6 but not in IR s 9 

and Seifert manifolds for fibered knots 

T. Cochran* 

Massachusetts Institute of Technology, Cambridge, MA02139, USA 

We exhibit the first-known orientable 4-manifolds which embed in ~6  but not 
in ~5.  These are also the first examples of compact, spin 4-manifolds which 
(punctured) cannot occur as Seifert manifolds for any simple, fibered knot in 
S 5. Necessary and sufficient conditions are derived for a 4-manifold to embed 
punctured in Ns, and these are applied successfully to prove positive results for 
several interesting classes including many of the above examples. 

It has been known for some time that: 
1) a closed, orientable, smooth 4-manifold X embeds in ~x 6 if and only if 

(D2(X)~--~-o-(X)--~-~0. (Thm. 2.5 of [1], [2]); 
2) X embeds punctured in ~6  if and only if co2(X ) =0  ([2, 16]). 
Curiously enough, the situation for embeddings in IR 5 was not known. In 

particular, it was not known if there was an orientable 4-manifold X which 
would embed (smoothly) in ~6  but not in ~5.  In fact, we showed in [5] that 
all "simple" 4-manifolds which embed in ]R 6 do indeed embed in R 5. "Simple" 
meant geometrically simple (e.g. S 1 x M 3, F 2 x F  2) or algebraically simple 
(HI(X) the direct product of fewer than 3 cyclic groups or rCl(X ) a free product 
of cyclic groups). Finding obstructions to embedding in ~5  was frustrated by 
the failure of the standard codimension-one obstructions (duality [10, 12] and 
asphericity [9]) and by the vanishing of all stable characteristic classes (since 
the hypotheses a (X)=  e)2(X ) =0  imply the stable-parallelizability of X). 

In this paper we exhibit homotopy obstructions to embedding in IR 5 and 
prove (compared to 1)) that: 

Theorem 3.3. For each odd prime p, there are closed, smooth, orientable 4- 
manifolds X p with ~l (X p)~- 7Iv x 7Zp x 7lv such that: 

a) Xp embeds smoothly in ~6,  
b) no manifold with the homotopy-type of Xp will embed (smoothly or TOP 

locally-flatly) in ~ 5, 
c) Xp~(#eS 2 • S 2) does not embed in ~5. 

k 
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As regards 2), we exhibit necessary and sufficient conditions for a closed 4- 
manifold to embed puctured in IR 5. However, in all cases thus far computed 
these conditions have not yielded the expected spin 4-manifold which does not 
embed punctured in IR 5. On the contrary: 

Theorem 5.6. I f  X is a closed, smooth, spin 4-manifold with 7[l(X)'~_-(~p) 3 and 
p---- 1 mod 3 then X will embed punctured in ~5. 

This and other results show that many of the counter-examples of 
Theorem 3.3 do embed punctured and that a spin 4-manifold which does not 
embed punctured might have to be more "complicated" than these. 

The manifolds of Theorem 3.3 are the first-known spin, index zero 4- 
manifolds which cannot be Seifert manifolds for unknotted 3-spheres in S 5 (see 
w 4). In fact, they cannot occur as such for any simple fibered knot, giving a 
partial answer to Problem 9 of [11]. 

The embedding of 4-manifolds in 5-space is intimately related to codimen- 
sion-two knot (and link) theory in S 4 and to homology cobordism of 4- 
manifolds ([3-6, 8, 16]). 

All manifolds and maps between them should be assumed to be smooth. 
However, the embedding obstructions associated to 3.3 actually obstruct TO P  
locally-flat embedding. 

I would like to thank Paul Goerss for many helpful conversations concern- 
ing the calculations in the appendix, and Tom Cochran (my father) for his 
assistance in my computer searches. 

w 2. The obstructions 

Suppose X is a closed, spin 4-manifold which embeds in R5 or, equivalently, 
S 5. For the remainder of this section suppose also that HI(X)~(Zp) 3 for p an 
odd prime. What we derive below is a special case of obstructions derived in 
[4] (see p. 55) and [5]. 

If X embeds in S 5, it separates S 5 into two (stably-parallelizable) 5-mani- 
folds A,B.  Thus X is a framed-boundary (equivalent to a (X)=~oz(X)=0 ). 
Furthermore, since A u x B  is S 5, the fundamental groups of A,B are not 
arbitrary. It is this property, being the boundary of a 5-manifold with a certain 
lrt, which forms our obstruction. Let L stand for L p - K ( Z p ,  1) and let the 
identification of Ha(X) with (Zp) 3 fix a map i: X ~ L  x L x L. 

Proposition 2.1. I f  X (as above) embeds in S s then there is an epimorphism 
: (~.p)3 ~(~p)2 such that the map ~P. : H 4(L x L x L) ~ H 4(L x L) sends i.  (IX]) 

t o  z e r o .  

Proof, A Mayer-Vietoris argument implies that the inclusions induce an iso- 
morphism: 

Zp • Zp x 7/p i.-1 , H1 (X)--~ H 1 (A) x H I(B). 

Letting A be the component with the larger H1, it follows that there is an 
epimorphism (a from nl(A ) to Zp x 71p such that the following commutes: 
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~ , / 1 ( A )  , 

nl(X ) 'ILpXll.pX~p--:--~7].pX~p 

where 7"=~boj, o i ,  1 is an epimorphism. This induces: 

X ~ L x L x L  ~ L x L  

from which the Proposition follows by taking H 4 of everything and noting that 
j , :  H 4 ( X ) ~ H , ( A  ) is the zero map. [] 

Note that we could have used H , (  ; Zp) and this would have resulted in an 
obstruction for any X with Hi(X; Zp)~(Zp) 3. Furthermore, given any two such 
4-manifolds X, Y and a modp  degree one map between them inducing an 
isomorphism on H1( ;Zv ) ,  this obstruction is "natural".  In particular, it van- 
ishes for X if and only if it vanishes for Y. Thus we have the philosophically 
interesting: 

Corollary 2.2. On the category of closed 4-manifolds with Ha( ; 7~,p)~---(~p) 3, there 
is a cohomology operation 

0: Hi( ;Zp)---~H4(;TZp• 

which must have a "non-trivial" zero on X if X is to embed in ~ 5. 

Proof. The operation 0 is defined as follows. Given X and a non-zero 
2~HI(X; Zp), we can associate an epimorphism 7': HI(X; 7Z.p)~ZpxZp (this 
necessitates fixing certain identifications beforehand). This induces a homotopy 
class of maps I f ] :  X ~ L  • L. If ~, fl are fixed generators of H4(L • L; ~.p) then 
let 0x(2 ) be the pair (f*(cQ, f*(fl)). [] 

Proposition 2.1 may be reformulated in a way that simplifies calculations 
by noting that any epimorphism 7J: (Zp)3~(Zp) 2 factors as poF where F is an 
automorphism of (Zp) 3 and p is the canonical projection onto the first two 
factors (fixing bases). 

Proposition 2.3. I f  X (as above) embeds in S 5, then there is an F in GL(3, Zp) 
such that p,  o F, o i, (IX]) = 0 where: 

H4(X ) i , , H 4 ( L x L x L ) _ e , , H 4 ( L x L x L )  _ p , ~ H , ( L x L ) .  

w 3. The manifolds 

The existence of orientable 4-manifolds which embed in IR 6 but not in ~ s  will 
now be demonstrated in two steps. Firstly, we show that there are classes [~3 
in H4(L x L • L; Z) which map non-zero under each p,  oF, as in 2.3. Secondly, 
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we show that these [~] are the images of the fundamental classes of certain 
spin, index zero 4-manifolds with fundamental group (Zp) 3. 

For Step 1, certain calculations are required, these being outlined in the 
appendix and summarized by: 

Lemma 3.1. Given F =(ai~)~GL(3 , 7Zp) and p the canonical projection to the first 
two factors, the map p,  oF,:  H4(L • L x L)-* H4(L x L) is given by the matrix: 

a22D33 a32D23 a12D3a a12D23 a32D13 a22D13 at2Dla+a22D23 aa2D33+a22D23 

az~D33 aa~Dza a~lDa3 a11D23 aa~D~3 a21Dla a~D~3+aE~D2a a3~D33+azlD23 

with respect to the Zp-bases {ex, e 2 . . . . .  e6, eT, e9} for H4(L x L x L)~(TZv)8 and 
{ex, e3} for H4(L• 2 as defined in the appendix. Here Dij is the de- 
terminant of the (i,j) minor of F. 

Theorem 3.2. For any odd prime p, there is a class [~]~H4(L x L x L) such that 
p .  o F.([~]) is non-zero for all F~GL(3, Z~). 

Proof Let [a] have coordinates (0, - r ,  1, 0, - t ,  1, 0, 0) with respect to the basis 
(el, e 2 . . . .  e6, eT, e9) where r and t depend on p and will be chosen below. 
Setting p .  o F . ( [ a ] ) = 0  gives two equations over Zp in the 9 variables (a~j) (use 
3.1). These imply: 

rD33D23- -rDZ3 

rD23 =D13(D33-tD23).  

Since F is invertible, at least one of D13, D23 , D33 is non-zero. Check that if 
O13 =023 = 0  then, although the congruences above are satisfied, the original 2 
equations will not be unless D33=0. Then, assuming r ~ 0  and making the 
substitution z = D 13 D -  1 23, we are ted to a cubic equation over Zp in the one 
variable z: 

z3 ~-tz +r-O.  

To complete the proof  we need only show that for any odd p there is a cubic 
of the above form which is irreducible in Z , .  Since z 3 - z - 1  works for p = 3 ,  
we can assume p > 3 .  A simple counting argument shows that the number of 
irreducible, monic, cubic polynomials (z3+az 2 +bz+c) is l p (p2_ l ) ,  which is 
greater than p2. Since at most p2 of these satisfy b=-~a 2, we can choose one 
where this does not hold. The substitution z ~ z - � 8 9  transforms our chosen 
irreducible to one of the form z 3 + r z + t  with r non-zero. Thus p .  oF.([~]) is 
non-zero for every invertible F. [] 

Of course there are many more such "bad"  classes [el,  as a computer 
search reveals. There are none, however, with only three non-zero coordinates, 
so the examples of Theorem 3.2 are the simplest. 

For S tep2  we need to recall from the appendix that the basis 
( e l , e  2 . . . . .  e6, eT, e9) is such that e2=xl(~xo(~X3, e3=x3(~Xl@Xo, es=X o 
~)Xl@x3, e6=Xo@X3QXl. The obvious map S 1 ~ L  represents x 1 while the 
inclusion of the 3-dimensional lens space L(p, 1)~--~L represents np.x  3 where np 
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is a unit. Since XI |174  0 is a positive multiple of x1QnpX3QX o (for exam- 
pie), each class [~] of Theorem 3.2 is the image of the fundamental class of a 
connected sum of copies of S 1 • L(p, 1) mapped into L • L x L according to the 
recipe given by the coordinates and basis above. (Here, one should take 
positive representatives for - r  and - t  modulo p.) Let Y be this connected sum 
and j be this map. Add 2-handles along Y • {1}~--~Y x I to kill the kernel of j ,  
on H~. With minor care, the result will be a spin cobordism from (Y,j) to 
(Xp, i) w h e r e  T~l(Xp)~(~,p) 3 and i . ( [ X ] ) = [ ~ ] .  Since Y was spin and of index 
zero, so is Xp and, by 2.3 and 3.2, X cannot embed in ~5.  

Thus we have proved the lion's share of: 

Theorem 3.3. For each odd prime p, there are closed, smooth orientable 4- 
manifolds Xp with rc 1 (X) ~ (7~,p) 3 such that: 

a) Xp embeds smoothly in ~6, 
b) no manifold homotopy-equivalent to Xp embeds in ]R 5, 
c) Xp ~ (S 2 x S 2) cannot embed in ~5. 

k 

Remarks. Parts b) and c) follow from 2.2 and the comments  preceeding it. Thus 
no 4-manifold Y which possesses a degree one map ( m o d p ) f :  Y'-*Xp that 
induces an isomorphism on H i ( ; Z p )  can embed in IR 5. Proposition 2.3 ac- 
tually obstructs a closed, orientable, topological 4-manifold from embedding 
T O P  locally-flatly in ~ 5  (uses 2.3 of [15]). We include the following "con- 
verse" to Theorem 3.3 to emphasize that, for these simple 4-manifolds, the 
obstruction of 2.3 is the sole obstruction to stable embedding in F,, 5. 

Theorem 3.4 (Theorem 9.6 of [4]). I f  rc 1 (X)_~7Zp x Zp x 2gp, and if the (orient- 
able) X embeds in IR 6, and if i . ( [X])=[c~]  is not one of the "bad" classes of 
Proposition 2.3 (i.e., there is F~GL(3,7Jp) such that p.  oF. oi . ([X])=O) then 
X ~ (S 2 x S 2) will embed in ~5.  

k 

w 4. Seifert manifolds for knots in S s 

The embedding of 4-manifolds in S 5 is related to the question of which 4- 
manifolds can occur as the Seifert manifolds of knotted S3's in S 5. Problem 9 
of [11] asks, "What  manifolds can occur as Seifert manifolds of higher- 
dimensional fibered knots?" We have the following partial solutions: 

Corollary 4.1. I f  7 ~ l ( X ) : ( ~ , p )  3, and X fails to satisfy 2.3 (e.g. the Xp of 3.3), then 
X ~ is not a Seifert manifold for any fibered knot in S 5 whose closed fiber embeds 
in ]R 5. In particular, X ~ is not a Seifert manifold for any simple fibered knot 
(including the unknot). 

Proposition 4.2. I f  V ~ is an (orientable) Seifert manifold for the knot 
K: S"~-*S "+2, n > l ,  where K is a fibered knot with fiber F ~ then V embeds in 
~ ,+2 if F does. 

Proof Since rc,(SO(2))~0 for n__>2, there is a unique framing on the n-sphere K 
(only a preferred framing if n :  1) such that surgery via it yields y,+2___S 1 • ~F, 
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with V embedded in Y Thus V~-~F • R and hence in a product neighborhood 
of F~--*Fx "+2. [] 

Proof of 4.1. The first statement follows directly from 4.2 above. If X ~ were a 
Seifert manifold for the simple knot K with fiber F ~ then [ X ~ ( - F ) ]  ~ would 
be a Seifert manifold for K # - K .  The latter is a simple fibered knot whose 
fiber, [F:H: - F ]  ~ is 1-connected and has index 0. Then Proposition 6.1 of [-5] 
would imply that F #  - F  embeds in IR 5, and, by 4.2, so would X ~ ( - F ) .  But 
the latter possesses a degree one map to X which is an isomorphism on H 1. 
Thus, since X does not embed in R 5, X ~ ( - F )  does not either (Corollary 2.2, 
remark after 3.3). [] 

Corollary 4.3. I f  X is a closed, orientable, index zero 4-manifold then the 
following are equivalent: 

A) X occurs as Seifert manifold of a simple fibered knot in S 5, 
B) X occurs as Seifert manifold of the unknot in S 5, 
C) X~--~R 5. 

Proof A ) ~ C )  since t r ( F ) = a ( X ) = 0  so F~--~R 5 [5]. 

w 5. Punctured embedding in n~ s 

Having found 4-manifolds X which embed in ]R 6 but not in R5 it is natural to 
address 2) (of the introduction) and ask, for example, if these embed after 
removing a small open 4-ball (called punctured embedding and denoted 
X~ Surprisingly, many do, including all Xp (i.e., those of 3.2). As of now, 
we do not know of a counter-example to the statement: "Every closed, smooth, 
spin 4-manifold embeds punctured in Rs,,. 

Punctured embedding is, of course, closely related to questions of which 
punctured 4-manifolds occur as Seifert manifolds for knotted S3's in S 5. A 
counter-example to the above statement would be one which could not occur. 
The results of this section can be interpreted in this context. 

The theorem below gives ncessary and sufficient conditions of a homotopy- 
theoretic nature for X ~ to embed in Rs. The subsequent theorems greatly 
simplify these conditions for certain categories of manifolds, so that the ques- 
tion of punctured embedding can actually be decided. All of our calculations 
to date have yielded positive results (see below). However, we believe that 
counter-examples to the above statement should be the rule, not the exception. 

If f :  G--* P is a group homomorphism, then f induces a homomorphism 
F k ( f ) : H k ( G ; Z ) ~ H k ( P ; Z  ). Fixing certain identifications beforehand makes 
this a well-defined functor. 

Theorem 5.1. Let X be a closed, orientable 4-manifold with 7z1(X)~G. Then X 
embeds punctured in ~5  if and only if there is a finitely-presented group P and 
homomorphisms gi: G ~ P  i=  1, 2 such that: 
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i) the push-out below is trivial, where d ( x y ) = x y  for xeG*{e} and y~{e} * G 

P 

G , G  

\ /  
G 

{e} 

ii) F I (g 1) -/ '1 (g2) is an isomorphism H 1 (G) -* H 1 (P), 
iii) Fz(gl)-F2(g2) is an epimorphism H2(G ) -*H2(P), 
iv) for some spin structure a on X and maps gi~ : X - *  K(P, 1) inducing the gi, 

we have 
(X, a, g ~ ) ~ ( X ,  o', g2 ~) in oSpin(K(P,  1)). 

Furthermore, if G is abelian, then P can always be chosen to be abelian (i.e., 
P~-G). 

Proof. X embedding punctured in ~5 is equivalent to (X ~ - X )  embedding in 
S s with one complementary component equal to X ~  I. The group P will be 
the fundamental group of the other component. From Theorem 4.1 of [5], the 
above conditions are necessary to embed ( X ~ - X )  in this manner. On the 
other hand, by Theorem 7.3 of [5], they are sufficient to embed (X ~ - X )  4t: (S 2 

k 
x S 2) in S 5, from which it follows that X~162 5. The final assertion follows 

from assuming i)-iv) for some P, replacing it by G ~  P h~ p / [ p , p ]  and 
verifying that i)-iv) still hold. The only tricky part (ii) is overcome by observing 
that Fl(gO-Fl(g2) being an isomorphism implies that Fz(h ) is an 
epimorphism. [] 

To make effective use of 5.1, we must better understand osPin(K(P, 1)). 
These are the spin bordism groups of spin 4-manifolds and maps into an 
Eilenberg-Maclane space (see [4, 5, 7]). We shall abbreviate these as oSpin(p) 
where P is a group. We then have the very useful: 

Theorem 5.2. I f  H2(P; 7Z2)~Ha(P; Z2)~0  , then (X, a,f)~t2spi"(P) is zero if and 
only if 

1) index(X)=O, and 
2) f , ( [X] )=O in H,(P;  Z). 

Proof. (~)  The Atiyah-Hirzebruch spectral sequence Hv(p;~176 
has vanishing E 2 terms except for E 2 and E e 0,4 4,0 ([4, 5, 7] and [13]). In gen- 

(Ospi- t z v  K p- 1) ~ Os~.~(K)). Thus "" where Jp q=image , p+q~.~ , eral Ep.q=Jp, o/Jv_l,q+ 1 

E 2 ~ E  ~ is the image of the (split) monomorphism sp~. O4 ~ ~,.~,~pin(p) whose 0,4- = 0,4 
cokernel is E ~ cH4(P;/~. ). Since a(X)=0,  we need only show that: (X,a) 4,0 f 

K = K ( P ,  t) can be borded into the 3-skeleton if and only if f , ( [X] )=0 .  
We outline the "if" part. Suppose f , ( [ X ] ) = - z ,  a 4-cycle in C4(K 4) (here 
K 4 is the 4-skeleton of K(P, 1)), and that z=O(A) with A~Cs(K5). 
Then (X, a, f ) ~ ( X ,  a, f )  LI ~( DS, standard, i: D s ~ A) ~(X ~S  4, a, g) where 
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g, ( [X#~S4])=0 in H4(K4;Z). Make g transverse to the barycenters of all 4- 
cells and pull back these points to get a collection of oriented points in X. 
Because of our previous adjustment, the collection will be trivial in f2 o and 
thus, by adding 1-handles to X x 1, we can bord (X, o, g) to (Y,, ~', h) where h(Y) 
misses the barycenters. [] 

We can now prove an extraordinary consequence of Theorem 5.1, which 
leads immediately to positive results on punctured embeddings and could 
eventually produce negative results. Recall that "~4oSpin is generated by a 1- 
connected, spin 4-manifold of index - 1 6  which we denote by K 4 ( -  the 
Kummer surface). Recall that p denotes an odd prime. 

Theorem 5.3. I f  X is a closed, spin 4-manifold with ~x(X)~-(Zp) m and index(X) 
= 16n, then X embeds punctured in ]R 5 if there is an F6GL(m, Zp) such that: 

a) Fx(F ) - I  is in GL(m, 7Zp), 
b) FE(F ) - I  is in GL(m, 7Zp), 

�9 X m C) F4(F ) - I  is zero on t , ( [  ])EH4((Zp) ). 

Furthermore, in the case 7zl(X)~Z p • • if X 4~(~K4)~(~$2 • S 2) does 
n k 

not embed in ~5,  then these conditions are necessary and sufficient for X to 
embed punctured. 

Remarks. Note that X4F(#eK 4) embeds stably in p 5  (for m=3)  if and only if 
n 

i , ( [X])  is one of the "good"  classes in H~(L • L x L) (see 2.3 and 3.4). Since 
these are totally determined (and obviously imply punctured embedding), the 
only interesting cases are where the above conditions are necessary. Notice 
how close these conditions are to saying that X ~ is a Seifert manifold for a 
fibered knot in S 5. 

Proof Apply Theorem 5.1, choosing P=(TZp) m, g l = F ,  g2=I. Use Theorem 5.2 
to translate iv) into c). This p roves the  first part of the Theorem. The second 
part is more difficult. Suppose X ~ embeds in R5 but that i , ( [X])  is one of the 
"bad"  classes of 2.3, i.e., X~(:~K4):~(~S 2 xS 2) does not embed in Rs. By 5.1 

n k 
we have F , G  in 3 3 Horn (Zp, 71v) which satisfy 

a) F - G  invertible 
b) F2(F)-F2(G ) invertible 
c) (X, a, F *) ~(X,  ~, G *) in f2Spin(L x L x L). 

It suffices to show that r a n k F = r a n k  G = 3  (since then we can modify by an 
automorphism to assume that G = I). This is done by disqualifying all of the 
other cases. Assume rank F > rank G. To satisfy a), we need rank F + rank G > 3. 
Suppose rankG<l '_  , then (X ,a ,G  ~) would factor through ~'~Spin(L)~~ so 
(X, or, F~).,~(X, ~r, c o n s t a n t ) ~ ( # ( - K 4 ) ,  r/, constant). Thus (X # K 4, a # ~l, F ~) 

?l PI 

would be trivial in f2spi"(L • L • L). Since the rank of F would necessarily be at 
least 2, the obstruction of 2.1 (and 3.4) would afortiori vanish for X # ( # K  4) 

t l  

implying that it embedded stably in ]R 5. Therefore, we can assume 
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rank F > rank G > 2. Next,  the case rank F = rank G = 2 can be el iminated be- 
cause the last pa rag raph  of our  appendix  reveals that:  

rank  F < 2 ~ rank Fz(F ) < 1 

rank G < 2 ~  rank Fz(G ) __< 1, 

and b) implies rank F2(G)+rank  Fz(F ) > 3. Finally, suppose that  rank  G = 2 and 
rank  F = 3 .  Wi thout  loss, we can assume G is induced by the canonical  "p ro-  
jec t ion"  to the second two factors, G * : L x L x L ~ L x L~--~L x L x L. Then c) 
implies that  (X #e K 4, o', F *) ~ ( X  ~ K 4, tr, G *) in ~'~Spin (L • L • L). By composing  

n n 

with the canonical  project ion p: L x L x L - , L  x L to the first two factors, it 
follows tha t  ( X f e K 4 , ~ , p o F e ) ~ ( X f e K 4 , ~ , p o G e ) .  But poG ~ will factor 

n n 

th rough L so (as above) ( X ~ K  4 ,a ,poF*)~O in Q S p i " ( L x L x L ) ,  showing a 
n 

fortiori that  the obstruct ion of 2.3 vanishes and hence contradict ing our  
assumption.  [ ]  

N o w  for our par t icular  results. 

Theorem 5.4. The 4-manifolds Xp of Theorem 3.2 embed punctured in N 5 if p 
1 m o d  3. 

Proof. We apply  T h e o r e m  5.3. Recall  i.([Xp])=(O, - r ,  1, 0, - t ,  1, 0, 0) in H4(L 
x L x L) where r, t are units. The  hypothesis  on p insures that  any n u m b e r  is a 

cube modu lo  p (page 54 of [14]) so r = y  3. Then, 

satisfies a, b and c of 5.3. 

F= ty -2 
y-2 

[] 

Theorem 5.5. I f  X is any closed, spin, smooth 4-manifold with ~I(X)~7Z. a X Z  3 
X 7~ 3 then X embeds punctured in ]R 5. 

Proof. We verified by compute r  that,  for any [c t ]eH4(L x L x L), there is an F 
as required by 5.3. The  calculat ions in the appendix  are, of  course, used 
heavily. This could be done for any p if one had the compute r  time. [ ]  

In the following theorem,  we succeed, a lmost  like the magicians  of old, in 
pulling the matr ix  F out  of  thin air. 

Theorem 5.6. I f  X is any closed, spin, smooth 4-manifold with 7 ~ I ( X ) ~ Z p X Z  p 
x 2gp and p - 1  m o d  3, then X embeds punctured in ~5. 

Proof Apply  Theo rem 5.3 with F = c I  where c is chosen so that  c a - l ,  C2~1 
modulo  p [14]. Not ice  that  the functor  F 2 is "quad ra t i c "  with respect  to scalar 
mult ipl icat ion,  that  is FE(CF ) = c 2 FE(F ). Similarly, F 4 is "cub ic"  (see Appendix).  
Thus  F4(cI)-I is  the zero matrix.  [ ]  

Corol lary 5.7. All of the Xp of Theorem 3.2 embed punctured in IR 5. 
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Proof. Use 5.4, 5.5 and 5.6. 

We must  stress that we have not shown that  every spin X with 7z~(X) 
-(7.e)3 embeds punctured.  If  p = - l m o d 3 ,  we have shown this only for 
certain ones called Xp (see 3.2). 

The gimmick of  Theorem 5.6 can be only partially extended to X with 
n~(X) ~ ( Z y '  m > 3, because F 4 fails to be "cubic".  Let us investigate further to 
see what  can be salvaged. 

The subspace T of  H4((7.p)" ) generated by basis elements of the form x~ 
| 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  and permutat ions is GL(m, Zp)-invariant. There- 
fore if rq(X)~-(7,p)" then the following makes sense: 

Definition. X is algebraically a toroidal  /f the subspace spanned by 
i,([X])~H4((Zp) m) has trivial projection on T. 

It follows that  i , ( [ X ] ) =  [~]~H4(Lx. . .xL  ) is a sum of elements of the form 
x l | 1 7 4 1 7 4 1 7 4  o and of  the form 

u , ~ ( x 2 |  |  | + X~ |174 X~ | |174 

These elements have the proper ty  that  F4(cF)=c3F4(F) on the subspace gener- 
ated by them (for any CeZp and FeGL(m, Zp)). This is essentially because they 
are constructed using the Bockstein exactly once. Therefore, if [=] is a toroidal  
then F4(cI)[= ] =e3[0O so, just  as in 5.7, we have: 

Theorem 5.8. I f  X is a closed, smooth, spin, algebraically atoroidal 4-manifold 
with 7[l(X)=(~,p)m with p - 1  m od  3, then X embeds punctured in p, 5. 

w 6. Questions and problems 

A) Find a closed, spin 4-manifold which does not embed punctured in R s ?  
B) If  X#~S2• S 2 embeds in R 5 then does X necessarily embed in ~ s  (see 

w of I-5-1)2 
C) If X ~ embeds in S 5, can the embedding be chosen so that  its image is a 

Seifert manifold for afibered knot  in $5? 

Appendix. Some calculations 

Letting L=-L~K(Zp, 1) and choosing SI'--*L to represent a generator x 1 of HI(L;Z), we can 
generate H*(L; Zp) by x 1, x2=flx 1, x3=x 1 fix 1, x4=flx 1 fix 1. Here, degree is indicated by super- 
scripts, cup product is denoted xlux 1 =x ~ x 1, and fl is the cohomology Bockstein associated to 
1 ~ Z ~ Z p 2  u--~ Zp~ 1. Bases of the corresponding H,(L; Zp) and H,(L; Z) are also induced. 

Let )'1 =xl |176174 x~ )'2 =x~174 xl | x~ )'3 =x~174176174 xl be the generators of H1(L x L x L; Ip) 
(for visual clarity we will use | instead of cohomology or homology cross product). These 
generate H*(L x L x L; Zp) if we use ft. In particular, H4(L x L x L; Zp) is generated as a Zp-vector 
space by 9 elements of the form )', )'j fl 7k where i <j, and 6 elements of the form fl)'i fl Y1 where i< j. 

Given F~GL(3, Zp), which we think of as acting on H~(L x L x L; Zp) by: 
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[',1 %1 P,1 
L'/3J L73J L~/3J 

we shall compute the induced map on H 4 ( L x L x L ; Z  ) by first computing F* on H 4 ( L x L  
x L; Zp). We see that: 

1) F*()~i)~jfl'Yk) = ~ ~ aqkD(i,j . . . .  )~m~nfl)~q 
q = l  m < n  

where D<i j , . . )  is the determinant of the minor  of A created by intersecting the ph and jth 
columns with' the mth and n ta rows (see pp. 239, 249, 253, 255, 281 of [17]). Similarly, the subspace 
generated by elements of the form flyiflyj is F*-invariant. Fix a basis of H 4 ( L x L •  
by letting d1=~1))2]~72 , ex=)ll~23fl~)3, ea=~lT2fl~ ' l ,  e4=Yl~},3fl~l, es=~2"~3fl~]3, e6=l'2Y3flY2, 
eT=Y2Y3 fl71, ~'8=Yl Y3 flY2, e9=71 Y2 fl'~3 and letting elo through e15 be the other six generators. 
With respect to this basis, 

r,=[ cS/  l 
L 0 $BrJ 

where C r is a 9 x 9 matrix derived from 1) and B r is an unspecified 6 x 6 matrix. The matrix of F.  
on H4(L x L x L; Z,)  with respect to the dual basis {~} is the transpose of the above. 

We are interested in the image of the natural map 

I2, : H4(L • L x L; Z) ~ H4(L x L x L; Zp). 

This is exactly the kernel of the homology Bockstein f14 associated to the same coefficient sequence 
as above (p. 281 of [17]). It may thus be determined that the image of/~, is generated by 

e l '  e2, e3, e4, e5, e6, e7 "Jres, eg-~- es 

(pp. 255, 281 of [17]). Define a new basis 

e t =t71, . . . ,  e 6 = e  6, e7 =e7 + e  8, e 8 = e  8, eg=e9 + e 8, e~o = ~0 ,  . . . ,  e~5 = ~ 5 ,  

so the change of basis matrix is of the form: 

where R is 9 x9.  Then the matrix of F .  on the image of #. is R-1 CR with the eighth row and 
column deleted. If we choose the obvious basis (also called {el} ) for H4(L x L x L; Z) consisting of 
ey-# ,~(e l )  i = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 ,  then the matrix of F, on H,,(Lx L x L ; Z )  is this same matrix 
(p. 222 of [17]), Looking back, we see that 

e I =xl@Xa@Xo, e2=xl@Xo@X 3, ..., e6=Xo@X3@X 1, 

eT=#21(x2@xlNxlq-XlNX2@x1),  e9=blgl(XlNXl@X2q-XlNX2(~xl) 

where we have used subscripts to emphasize that we are in homology. 
Finally, note that the inclusion L(p, I)~-~L~ =-L certainly represents a generator of H3(L; Z) so 

let us call it rtp. X 3 where np is a unit in ltp. [] 

We need to compute the map  p .  on H4( ; lg) induced by the projection L x L x L--* L x L onto 
the first two factors. Clearly H4(L x L) is generated over Zp by p.(e~) and p.(e3), and in fact the 
map  p .  is the obvious projection (p. 235 of [17]). Thus, p .  o F, is given by the first and third rows 
of R -  ~ CR with the eighth column deleted. This is written out in Lemma 3.1. [] 
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The automorphism F,: Hz(L x L x L)~--=induced by F can be similarly deduced, and is given 
rather neatly by the transpose of the matrix whose (i,j) entry is D~j (the determinant of the (i,j) 
minor of A). This is with respect to the basis 

{ X O @ X I @ X 1 , X I @ X o ( ~ X 1 , X I ( ~ X I ( ~ X O }  �9 [] 
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